Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Data management $\&$

 Statistical analysis

 Statistical analysis}

Sasivimol Rattanasiri, Ph.D
Department of Clinical Epidemiology and Biostatistics
Ramathibodi Hospital, Mahidol University
E-mail: sasivimol.rat@mahidol.edu
www.ceb-rama.org

Research question

Data management

Statistical analysis

Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Scope

Understand basic questions...

> What are objectives of research?

What is type of study design?

What variables will be involved?

How variables will be measured?

How often variables will be collected?

Understand basic questions...

Research question

A retrospective cohort study of kidney transplantation
(KT) patients was conducted to assess the association
between types of donors and risk of graft failure

Understand basic questions...

Understand basic questions...

Factors associated with graft failure

Understand basic questions...

Factors associated with graft failure

1. Date of birth	$\square \square / \square \square / \square \square \square \square$ (DD/MM/MYY)	
2. Gender	\square 1. Male	\square 2. Female
3. Types of donor	$\square 1$. CDKT	\square 2. LRKT
4. Weight	$\square \square \square \mathrm{kg}$.	
5. Height	$\square \square \mathrm{cm}$.	

Factors associated with graft failure

1. Date of visit	$\square \square / \square \square / \square \square \square \square$ (DD/MM/MYY)	
2. Graft status	\square 1. failure $\quad \square$ 2. function	
3. Date of failure	$\square \square / \square \square / \square \square \square \square$ (DD/MM/MMY)	
4. Serum creatinine	$\square \square \mathrm{mg} / \mathrm{dL}$	
5. Serum albumin	$\square \square \mathrm{g} / \mathrm{dL}$	

Understand basic questions...

How often variable will be collected...

Types of donor
.......... \rightarrow collected every 6 months after KT
collected at the enrollment period

Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Scope

Data management

Data management

Case Record Form (CRF)

" a paper or electronic form designed to collect all of data , which specifies by study protocol

Poorly designed CRF

Well designed CRF

Poorly designed	Well designed
Date of visit:	Date of visit: (DD/MM/YYYY)
Blood pressure: ___	Blood pressure: \square $\square /$ \square $\square \square$ (mmHg)
Pulse:	Pulse: $\square \square \square$ (beats/min)
Temperature:	Temperature: $\square \square . \square$ (${ }^{\circ} \mathrm{C}$)
Respiration: ___	Respiration: $\square \square$ (/min)

Provide boxes to hold answers

Unit of measurement did not display on CRF

Units and decimal points should be displayed

Objective of CRF design...

Preserve and maintain	Quality and integrity of data
Gather	Complete and accurate data
Avoid	Duplication of data
Facilitate	Transcription of data from sources documents onto CRF

Mahidol University

Faculty of Medicine Ramathibodi Hospital

How to prepare data in Excel...

Cross-sectional data

Follow-up data

Cross-sectional data

Subject	Age	Sex	Group	Response
1	32	Female	Treatment	No
2	45	Female	Control	No
3	23	Male	Control	Yes
4	38	Female	Treatment	No
5	36	Male	Control	Yes
6	29	Male	Control	Yes
7	43	Male	Treatment	Yes
8	39	Female	Control	No
9	51	Male	Treatment	Yes
10	42	Female	Treatment	No

Variable name

- Not exceed than 10 characters
- Not contain space
- Not begin with number

Cross-sectional data

Subject	Age	Sex	Group	Response
1	32	Female	Treatment	No
2	45	Female	Control	No
3	23	Male	Control	Yes
4	38	Female	Treatment	No
5	36	Male	Control	Yes
6	29	Male	Control	Yes
7	43	Male	Treatment	Yes
8	39	Female	Control	No
9	51	Male	Treatment	Yes
10	42	Female	Treatment	No

Types of Data

- Only numerical data
- Set special for missing data

Cross-sectional data

Subject	Sex	Group	Response				
1	Female	Treatment	No				
2	Female	Control	No				
3	Male	Control	Yes				
4	Female	Treatment	No				
5	Male	Control	Yes	Subject	Sex	Group	Response
1. Male 1. Treatment 2. Female 2. Control			$\begin{aligned} & \text { 1. Yes } \\ & \text { 2. No } \end{aligned}$	1	2	1	2
			2	2	2	2	
			3	1	2	1	
			4	2	1	2	
			5	1	2	1	

Cross-sectional data

Subject	DM	HT	CVD	Malignant
1	1	2	1	2
2	1	2	2	2
3	2	1	2	1
4	1	2	1	2
5	2	1	2	1
6	2	1	2	1
7	1	1	1	1
8	1	2	2	2
9	2	1	1	1
10	1	2	1	2

Use consistency code

1. Yes
2. No

Cross-sectional data

Subject	TAC	Dose_TAC	MMF	Dose_MMF
1	1	0.5	1	180
2	1	1.5	2	0
3	2	0	2	0
4	1	3.5	1	360
5	2	0	2	0
6	2	0	2	0
7	1	2.5	1	180
8	1	3	2	0
9	2	0	1	540
10	1	2.5	1	360

Dose format

- Specify unit for data entry (mg/day)
- Enter "0" for not receive treatment

Follow-up data: Long format

Subject	Visit	Date visit	SBP	DBP	Response
1	1	$12 / 08 / 2000$	90	65	2
1	2	$05 / 09 / 2000$	95	60	2
1	3	$11 / 12 / 2000$	90	65	1
2	1	$16 / 03 / 2011$	120	80	2
2	2	$09 / 07 / 2011$	125	85	1
3	1	$06 / 12 / 2012$	100	85	2
3	2	$08 / 06 / 2013$	105	90	2
3	3	$10 / 09 / 2013$	110	90	2
4	1	$23 / 04 / 2008$	150	95	2
4	2	$19 / 11 / 2008$	155	98	1

Mahidol University

Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Follow-up data: Wide format

Subject	date1	SBP1	DBP1	resp1	date2	SBP2	DBP2	resp2	date...	SBP...
1										
2										
3										
4										
5										

Inappropriate data format

L15	\checkmark -	$\times \vee f_{x}$	0.2					Not appropriate format for statistical analysis
4	Q	R	S	T	U	V	W	
	SARS Cov 2 IgG Spike Protein (AU/ml)	SARS Cov 2 IgG Spike Protein (BAU/ml)	\% IH Euroimmune	\%inhibition (sVNT-delta)	IGRA T Cell			
4					วันที่เจาะเลือด	Interpretation	Value ($\mathrm{mlV} / \mathrm{ml}$)	
5	2.6	0.37						Incorrect variable name
6	0.1	0.01	-3.56	-13.10				
7	0.2	0.03			9/22/2564	Negative	30.3	
8	2.6	0.37						
9	56.4	8.01	-17.03					
10	15.8	2.24			26/9/2564	Negative	-1.2	

Wisdam of the Land

Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Inappropriate data format

IGRA T Cell			CODE	วันที่เจาะเลือด	ระยะเวลาเจาะ เลือดหลังฉีด วัคซีนเข็ม 2	SARS Cov 2 IgG Spike Protein ($\mathrm{AU} / \mathrm{ml}$)
วันที่เจาะเลือด	Interpretation	Value (mIU/ml)				
			H3	10/2/2564	22	4.6
			H4	8/13/2564	14	5.0
9/22/2564	Negative	30.3	H6	10/6/2564	14	3.5
			H8	10/1/2564	16	4.8
			H10	10/1/2564	23	1096.8
26/9/2564	Negative	-1.2	H11	10/16/2564	13	36.6
			H13	10/5/2564	36	4.2

Incorrect variable name

Wiadom of the Land

Inappropriate data format

Not appropriate format for underlying disease

underlying						
	HTN	CAD	DM	hepatitis	Cancer	SLE
HT	1	0	0	0	0	0
DM, HT , CAD	1	1	1	0	0	0
DM,HT	1	0	1	0	0	0
HT	1	0	0	0	0	0
HT	1	0	0	0	0	0
HT	1	0	0	0	0	0
DM, HT , CAD	1	1	1	0	0	0

Inappropriate data format

| |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

Wiadom of the Land

Appropriate long format for follow-up data

Subject	vaccine	neoral	prograf	cellcept	myfortic	pred
1	1	0	5	1000	0	5
1	2	0	4	1500	180	5
2	1	0	1.5	1000	360	5
2	2	100	1	0	720	5
3	1	0	0	1250	0	5
3	2	150	4	0	180	5
4	1	0	2	1000	0	5
4	2	0	0	1500	720	5
5	1	100	3.5	0	360	5
5	2	150	0	0	180	5

Appropriate wide format for follow-up data

Subject	neoral1	prograf1	cellcept1	myfortic1	neoral2	prograf2	cellcept2	myfortic2
1	0	5	1000	0	100	5	1000	0
2	0	4	1500	180	150	4	1500	180
3	0	1.5	1000	360	0	1.5	1000	360
4	100	1	0	720	0	1	0	720
5	0	0	1250	0	100	0	1250	0
6	150	4	0	180	0	4	0	180
7	0	2	1000	0	150	2	1000	0
8	0	0	1500	720	100	0	1500	720
9	100	3.5	0	360	0	3.5	0	360
10	150	0	0	180	150	0	0	180

Types of data

Categorical data

- Nominal data
- Ordinal data

Numerical data

- Discrete data
- Continuous data

Categorical data

Nominal data

Sex: male/female ->dichotomous data
Blood group: $A / B / A B / O$
Degree of injury: mild/moderate/severe
Stage of cancer: I/II/III/IV

Numerical data

Discrete data	Length of hospital stay
	Number of heart beats per minute
Continuous data	Cholesterol level (mg/dL)
	Fasting blood sugar (mg/dL)

Types of statistics

Summarizing: Categorical data

Sex	Frequency	Percentage
Male	56	80
Female	14	20
Total	70	100

	I	120	15
Ordinal data	II	320	40
	III	160	20
	IV	200	25
	Total	800	100

Summarizing: Numerical data

Summarizing: Numerical data

	Mean	SD
Age (year)	49.6	14.3
Weight (cm)	95.6	21.7
Height (cm)	161.5	9.2

Normal distribution

	Mean	SD
CD4 count	62.4	74.4
CAscore	177.7	352.9
	Median	Range
CD4 count	30.5	1,358
CA score	51.0	1,4879

Mahidol University
Faculty of Medicine Ramathibodi Hospital
Department of Clinical Epidemiology and Biostatistics

Summarizing data

Dummy table for descriptive data

Characteristics

Gender; n (\%)

Male
Female
Age; years; mean (sd)
Age; n (\%)
<30 years
≥ 30 years
Body weight; kg; mean (sd)
Diabetes; n (\%)
Yes
No

Inferential statistics

Parameter estimation

- Point estimate
- Range estimate

Hypothesis testing

- Single population
- Two population
- More than two pop.

Inferential statistics

Parameter estimation

- Point estimate
- Range estimate

Hypothesis testing

Single population
Two population
More than two nor.

Parameter estimation

> Estimation of mean age of patients who had breast cancer in Thailand
> Estimation prevalence of chronic kidney disease in Thai population

Continuous data

Point estimate	The mean age of 750 patients with DM was 54.42 years
Range estimate	95\% CI of mean age range from 43.65 years to 62.34 years

Categorical data

Point estimate	42 in 350 subjects had hypertension, prevalence of hypertension was 0.12
Range estimate	95% CI of the prevalence of hypertension was from 0.09 to 0.15

Recommendation

- Point estimate should be reported with their confidence intervals to indicate their precision
© Prevalence of HT was 12% with 95% CI: 9-15\%

Inferential statistics

Hypothesis testing

- Single population
- Two population
- More than two pop.

Hypothesis testing

Continuous outcome

Test if the means of BMD
between postmenopausal women who received and did not receive calcium supplements differ.

Dichotomous outcome

Assess the association
between traditional medicine used and osteoporotic hip fracture.

Types of errors

Hypothesis testing

Null hypothesis

II. Hypothesis testing

- Categorical outcome
- Continuous outcome

Hypothesis testing for categorical data

Tests of association
Independent sample
Paired-sample

Hypothesis testing for categorical data

Tests of association

Independent sample

Independent sample

- A case-control study was conducted to look at effect of traditional medicine and osteoporotic hip fracture.

2 The outcome of interest was osteoporotic hip fracture.
ə The exposure of interest was traditional medicine.

2×2 contingency table for independent sample

Hip fracture	Traditional medicine used		
	Yes	No	n
Yes	20	208	228
No	8	216	224

Statistical analysis

© The Chi-square test is used to examine association between two categorical variables
ə H_{0} : The proportions of the interested event between two independent groups are not different
○ H_{0} : Two categorical variables are independent
H_{0} : No association between traditional medicine and hip fracture

Conclusion

- Reject null hypothesis
© There was association between traditional medicine and hip fracture
tab tredmed hip,col exp chi2

> Wiadam of the Land

Statistical analysis

(The Chi-square test is not appropriate if small sample.
© Expected frequency is less than 5 for more than 20% of the total cells
© The Fisher's exact test is an alternative method

Independent with small sample

- A case-control study was conducted to look at effect of receiving HRT on risk of hip fracture.
- The outcome of interest was hip fracture.
© The exposure of interest was HRT.

2×2 contingency table for independent sample

Hip fracture		HRT		
	Yes	No	n	
Yes	1	213	214	
No	(1.5)	(212.5)		
	2	214	216	

H_{0} : No association between HRT and hip fracture

Conclusion

- Fail to reject null hypothesis
© There was no association between HRT and hip fracture
tab hrt hip,col exp exact

Fisher's exact =

1.000

1-sided Fisher's exact $=$
0.503
Wiadom of the Land

Characteristics	Hip fracture	Non-hip fracture	P value
	$\mathrm{n}(\%)$	$\mathrm{n}(\%)$	
Age, year			
<60			
≥ 60			
Gender			
Male			
Femal			
Hypertension			
Yes			
No			

Hypothesis testing for categorical data

Tests of association

Independent sample

Paired-sample

Paired sample

- Comparison of pain relief (yes/no) by two different analgesics in the same subjects.

2 In a matched case-control study, matched case to control patients with BMI , aim to assess the association between HRT and the hip fracture.

2×2 contingency table for paired sample

Case			
	Control		
	HRT+	HRT-	n
HRT+	102	50	152
HRT-	100	120	220

H_{0} : No association between HRT

 and hip fracture
Conclusion

- Reject null hypothesis
- There was association between HRT and hip fracture
. mcc case control

Note: if number of discordant pairs is less than 20, the Exact McNemar's test is more appropriate
Wiadarn of the Land

Hypothesis testing for categorical data

II. Hypothesis testing

- Categorical outcome
- Continuous outcome

Hypothesis testing for continuous data

Single group
Two groups

- Independent sample
- Paired sample

Three groups or more

Hypothesis testing for continuous data

Single group

Two groups

- Independent sample
- Paired sample

Three groups or more

Independent sample

- Comparison of systolic blood pressure between men and women.
© Comparison of cholesterol level between patients with and without chronic kidney disease.

Statistical test for two independent groups

Distribution	Parameter	Statistical test
Normal	Mean	- Student t-test with equal variance
		- Student t-test with unequal variance
Non-normal	Median	- Mann-Whitney test,
		- Quantile regression

Example I:

D Researchers wanted to test if means/median of weights of HIV patients who received NVP, and HIV patients who received EFV, are different.

Variance ratio test

Conclusion

V Variances between two groups are not different.

Wiadom of the Land

Student t-test with equal variance

Conclusion
© Mean weights between two groups are not different.

Example II:

- Researchers wanted to test if CD4 count of HIV patients who received NVP, and HIV patients who received EFV, are different.

Faculty of Medicine Ramathibodi Hospital Department of Clinical Epidemiology and Biostatistics

Ouantile regression

Dummy table for two groups comparison

Characteristics	NVP	EFV	P value
	Mean (SD)	Mean (SD)	

Age (year)

Weight (kg)

Height (cm)
BMI (kg/m $\left.{ }^{3}\right)$
CD4 count; median (range)

Paired sample

- Comparison of systolic blood pressure before and after used of OC in pre-menopausal women.

○ In matched case-control study, matched by age and sex, which aim to compare oral hygiene index between periodontitis and non-periodontitis patients.

Statistical test for paired sample

Distribution	Parameter	Statistical test
Normal	Mean	Paired t-test
Non-normal	Median	Wilcoxon matched signed-rank test

Example III:

- Researchers wanted to test if mean weights of HIV patients before and after receiving an antiretroviral therapy regimen are different.

Paired t-test

Example IV:

- Researchers wanted to test if median of CD4 count of HIV patients before and after receiving an antiretroviral therapy regimen are different.

Wilcoxon matched signed-rank test

Conclusion
 © Reject null hypothesis
 - Median CD4 count before and after receiving regimen are different

```
. signrank cd4c0= cd4c12
```

 Wilcoxon signed-rank test
 sign | obs sum ranks expected

> Wiadarn of the Land

